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Abstract

In this paper we discuss different apprnaches for exploiting parallelism in
the [CCG method for solving large sparse symmetric positive definite systems
of equations on a shared miemory parallel computer. Techniques for efficiently
solving triangular systems and computing sparse matrix-vector products are
explored. Three methods for scheduling the tasks in solving triangular systems
are implemented on the Sequent Balance 21000. Sample problems that are rep-
resentative of a large class of problems solved using iterative methods are used.
We show that a static analysis to determine data dependences in the triangular.
solve can greatly umprove its parallel efficiency. We also show that ignoring
symmetry and storing the whole matrix can reduce solution time substantially.
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1 Introduction

We explore different schemes for exploiting the parallelism available in the ICCG
method for solving large sparse systems of linear equations on a shared memory
computer. All of this work has been conducted on a {2 processor Sequent Bal-
ance 21000. We have looked at the efficient imnplementation of methods for solving
triangular systems and at sparse matrix vector multiplication.

An important difficulty in solving general sparse triangular systems is that the

available parallelism depends on the zero structure of the matrix, and is therefore not
known at compile time. The concurrency is data dependent and can be determined
only at run time. We show that by performing a small amount of analysis to
determine the data dependences one can drastically improve the parallel efficiency.
We permute (reorder) the index set of the recurrence equation for the triangular
solve and put the indices in a queue. The processors repeatedly rake indices from
the queue, perform the associated calculations, and then take another index until all
unknowns have been computed. Data dependences are resolved by semaphores. \
semaphore is a variable that can be operated upon only by synchronizing primitives.
We check indices in a shared arrayv that indicate whether each of the unknowns has
been computed. If a calculation depends on a piece of data and an entry in the
shared array indicates that it has not been computed then the processor performing
the calculation must busy wait. Busy waiting is when a processor loops waiting for
a flag to change value.

Also, we show that there is a tradeoff between storing the lower triangular part
of a symmetric matrix and storing the entire matrix. Storing the lower part to save
storage complicates the multiplication since both outer products (which require syn-
chronization) and inner products must be performed. The synchronization overhead
slows down this operation.

For our experiments we work with systems of equations in the form they are
presented. We do not consider the problem of reordering the rows and columns to
enhance parallelism.

The rest of this paper is organized as follows. Section 2 reviews related research. .
Section 3 contains a brief discussion of the I[CCG method. Section 4 discusses how
the dependence graph is used to exploit the parallelism in solving sparse triangular
systemns, Section 5 contains numerical experiments that show it is more efficient to
store the whole symmetric matrix than only the upper or lower triangular part. In
Section 6 we compare solving a lower triangular system by inner products versus
solving by outer products. Section 7 presents the efficiency of the ICCG method
using the techniques described in the previous sections. Section R dicusses other
scheduling methods not used in this paper. Section 9 contains remarks and conclu-
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stons. Appendix A describes the 7 test cases used in the expertiments, \ppendix
B discusses the architecture of the Segnent Balance 21000 and provides times for
arithmetic operations and synchronization primitives. In Appendix (7 we show how
the time to access array elenments increases as a function of the array size oun the
Sequent Balance 21000,

2 Related Work

Level schednling methods are considered in [2.12.27]. Anderson {2] compares two
different schednling methods for solving <parse triangular systems on the Allian?
FX/%. a shared memory machine. They are forward Iovel seheduling, in which each
anknown in the triangnlar solve is computed as early as possible. and backicard le el
scheduling. in which cach nnknown is computed at the latest possible time. \ level
schednling approach partitions the loop of the recurrence equation into a sequence
of flly paratlelized do loops (levels) separated by global synelironizations, He shows
that the overhead in <chedaling tasks to be performed as late as possible is not worth
the time savings.

Baxter ¢t al. [3] compare level scheduling with a self scheduling method using a
shared memory computer. an Fncore Multimax/320. The self scheduling method is
a two step procedure to parallelize the recurrence equation of the triangular solve.
First. one performs a topological sort of the dependence graph to permute the index
loop. Next. staticallv assign elements of the index set to the processors of the
system. Global synchrouizations are avolded by requiring processors to write into
specified locations of shared arrays when work on a particnlar index is completed.
Before a variable can be nsed, a processor makes sure that the appropriate values
have been calenlated by busy waiting on a desiznated value in the shared memory,
They show that self seheduling performs better than feecl seheduling for all but one
of their fest cases.

The work of Saltz /. al. [25] is similar 1o the work of Baxter. They also compare
level seheduling and sc/f schedulingon an Encore and reacl similar conelusions. Saltz
also proposes a new programming construct. doconsider which allows compilers to
parallelize many problems in which substantial loop-level parallelisi is available b
cannot be detected by ~standard compile-time analysis.

The difference between the work presented here and previous work on friangnlar
systems s that we nse dyvnamic scheduling to assign tisks to processors and the
others use static scheduling.

In this paper we focius on general parallel processors hut others have studied
implementations on parallel vector machines [15.15.20.26]. Additionally. Saad [21]
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presents a survey of recent researcl in Krylov subspace methods with an emphasis
on parallel and vector iinplementations.

3 ICCG Background

Here we give a brief introduction to the Incomplete Choleskv Conjugate Gradient
{(ICCG) method. For detailed information of its derivation and properties see ref-
erences 6.11.13.17,18.23]. The Conjugate Gradient (C G method was proposed by
Hestenes and Stiefel {13! for the solution of

A = b, (1)

where Lisa given symmetric positive definite ¥V by ¥ matrix. his a given V-vector
and ris an N -vector to be computed. '

Starting from an initial guess 9, the CG method generates a series of approx-
imate solutions ¥1. The convergence raie is very poor for ill-conditioned problems
[11]. Oune way to improve the convergence is to pre-condition (1) - premultiply it
by a conditioning matrix and rhereby condense the eigenvalue spectrum (4.

A popular preconditioner is the Incomplete Cholesky precouditioner proposed
by Meijerink and Van der Vorst [IX}: they perforin an approximate Cholesky-
factorization LLT of 1 with zero R Fquation { 1) now becomes:

N

(/f”')[f‘.sjf:u:f)[flb. (

L=1is not explicitly computed, instead triangular systems are solved. Fach iteration
of the [CCG method requires the solution of two sparse triangular systems. a sparse
matrix vector product, 3 saxpy’s and 2 inner products.

We warn the reader that we nse an inconsistent notation here from the rest of
the paper. Here we subscript a vector ro indicate that it is a member of a sequence
vather than referring to an individual element. The greek letters represent scalars.
The [CCG method is below:

Iy =
rg =

[=alien]

& =il

repeat For k=1. 2. ...
Solve [,[,rfk._‘ =ri.q for oy
fp 1= ?z;lnc_]," 7,.;,,‘.3:3:—3 { fl =1{)
S R =)
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ok 1= T yre /o Ape
Tk i= k-1 + Pk
Fe 1= Phoy — g Apy
until ||rell~ < 6

T o= I

For our codes we choose : = 107" so our iteration stops when the infinity norm
of the residual is reduced by 6 orders of magnitude.

4 'Triangular Systems
At each ICCQG iteration we solve the triangular systems
Lg=r (3)

and
[Tz = q. (4)

Together, these.two operations consume between 30% and 41% of the total cpu time
required to solve the system on a single processor for our test cases. The percentage
depends on the sparsity of [ - the more nonzero elements in L the higher the per-
centage. The remaining time is consumed by sparse matrix-vector products, inner
products and saxpy’s. These are relatively easy to compute in parallel. Efficient
parallel computation of the triangular solves is necessary to accelerate the entire
computation.
The svstem (3) is solved by

=1
_rni=2 s Lo

=1, ..., ¥ 5)
Li; I (

-

q

In the dense case, each ¢, depends on all ¢q,, j = 1.....i — 1. When L is sparse.
each ¢, depends on a few other ¢;. Another way to look at it is that once some g,
has been computed, several other ¢'s mayv be computed in parallel. It is possible to
perform some simple analyvsis of the data dependences to determine which elements
of ¢ can be computed in parallel and determine which ¢;’s each ¢; depends on. This
information can be utilized to schedule tasks. For example, if ¢; depends on ¢, then
1; should be scheduled hefore g,. Also, if q; and ¢, are independent tasks then we
may schedule them to be computed in parallel. )
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Figure L: Sparsity Structure of L

4.1 Computing the Dependence Graph

The problem one faces when exploiting this type of parallelism is that it is data
dependent and can only be recognized at run time, not at compile time. [t depends
entirely on the sparsity structure of L. L is usually read in as input or computed
at an earlier stage of the program. The focus in this section and the next one is
on lower triangular systems. A similar analysis can be done on upper triangular
matrices.

Consider solving (3) where L has the sparsity structure shown in Figure 1.
Analysis of the structure of L enables us to construct a corresponding directed
graph (digraph), the dependence graph G{L} = (V.F). There are ¥V vertices,
Vo= {l. .... .V}, corresponding to the NV rows of L (and .V elements of ¢). A
nonzero elemnent at /;; means that ¢ depends on g;: i.e.. ¢; must be calculated
before q,. Therefore. we define the edges of /(L) as follows: £ = {(j.i) | ;, # 0}.
We ignore the loops corresponding to the diagonal elements of L ((/(L) is acyclic).
The depth of a vertex r; is 0 if it has no predecessors otherwise the depth of v; is the
length of the longest directed path in (L) whose origin is a vertex of depth 0 and
terminus is .

The dependence graph of L is shown in Figure 2. All nodes at depth 0 can
be computed immediately. They have no dependences. ¢; and g3 can be solved
directly. Once q3 is computed we can solve for q;. After q; is computed we can solve
for g2 and s in parallel. The unknowns ¢z and ¢s depend only on ¢;. Once ¢2. ¢
and ¢4 have been computed. we can solve for g5, g7 in parallel. Vertices that have
equal depth represent independent tasks. The fact that ¢, and ¢s can be computed
as soon as ¢, has been computed. even if g3 has not been completed. illustrates
the difference between lerel scheduling methods and self scheduling methods. level
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Figure 2: Dependence Graph of L

scheduling computes tasks corresponding to vertices of equal depth in & in parallel.
All tasks at a certain depth must be completed before tasks at the next level can be
started. Global synchronizations are used to separate tasks at different depths. self
scheduling allows tasks to start as soon as their associated dependences have been
computed.

4.2 Permuting the Index Set

The index set for the sequential solution of equation (3)is i = 1, .... V. To exploit
the parallelism in the forward solve we reorder the index set according to the depth
of each index in the dependence graph. A verrex of a certain depth is put in the
permuted set before all vertices of greater depth. We define postion(k) to be the
number of elements in the premuted index set that precede k. If two vertices r; and
v; have equal depth then we put v; in the permuted index set before v, if

max(position(n)) < mrgx(positi:m(m)) such that (n,2).(m,j) € E.
n R

It

max(position(n)) = max(position(m)) such that (n,i}.{m.j) € E
n mm

then n = m and »; is placed in the list before v, if i < j. This is a side effect of the
sequential traversal of the data structure for L.
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We call this permuted index set fwd.schedule. For example, the permuted
index set from the dependence graph in Figure 2 is

fwd_schedule = {I, 3. 2, 6, 4, 5, 7. 8}

Note that 6 appears before 4. 6 is a descendent of 1 and 4 is a descendent of 3 and
position( 1) < position(3).

One way to compute the fwd_schedule list is outlined here. First, as the matrix
is assembled or read in, construct an array of length V. called the ready array such
that ready(d] is the number of nonzero elements in row { of L. We then scan the
entries of the ready array looking for entries with a value of 1. If ready(i) = 1 then ¢,
can be solved for directly. This entry is put in a queue, Q. When we have inserted
all entries with value 1 in @ we start the following loop. We follow the notation
used in [1] for operations on a quene. .\ queue is a special kind of a list. where items
are inserted at one end (the rear) and deleted from the other end {the front).

fwd_schedule = nil
While {empty(Q) # true)

L. ¢:= fronl{ Q)
dequene( Q)

tw

append i to fwd_schedule list

-

for each nonzero element Ly,
{a) ready(k) = ready(k) -1
{(b) if (ready(k) = 1) then enqueue(Q, k)

The dependence graph is not explicitly computed but the information it repre-
sents is implicit in ready and the ordering of fwd_schedule. We require two integer
arrays of length V to hold fwd.schedule and ready. This additional storage is small
relative to the storage for A. L and the other \V-vectors needed for ICCG.

Equation {4) is also solved with a permuted index set. which we store in the array
back_schedule(]. It is computed by analyzing the dependence graph of LT, G(LT).
in a manner similar to that used to compute fwd_schedule. Let G(LT) = (V7. E7),
Vr=Vand Er = {(j.O)(i.j) € E}. G(LT)is the same as G(L) with the direction
of the edges reversed. For the example shown in Figure 1. the schedules for solving
the npper and lower triangular systems are the reverse of each other. This is not
true in general. Suppose that we have the same lower triangular matrix as in Figure
l except Ly and Lgyg are the only nonzero elements in row R of L. Then. rg will
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case | fwd_schedule | fwd solve | back_schedule | bck solve | Ax=b
1 12 13 Al .16 1.89
2 .06 .06 05 .06 2.45
3 .05 .05 .04 .04 3.07
4 .07 .08 .06 .0R 3.21
3 .10 Al .09 .10 R.85
6 .25 .30 .23 .28 R.52
7 3.12 3.25 2.09 2.18 653.39

Table 1: Time in seconds to compute task schedules vs. single sequential triangular
solve and solving Ax=b in parallel

be depth 1 in G(L) and 3 will be the 6% element in fwd_schedule[]. But, rg will
be at depth 0 in G(LT) and the first element in back_schedule[].

The time to compute the permuted index sets is a little less than the time to
compute a single sequential triangular solve and a small fraction of the time to
solve (2) in parallel. The time in seconds to compute the forward and backward
schedules for the test cases is shown in Table 1. We compare the time to compute the
fwd_schedule and the back_schedule lists with the time to sequentially compute
one forward and backward solve and with the time to solve Axr = b in parallel.

4.3 Forward Solve

We solve (3) as follows. [ is stored by columns and the forward solve is computed
as a set of outer products. fwd_schedule is the list of indices which correspond to
elements of ¢ to be computed. It is treated as a queue of tasks to be executed by
the pool of processors. Let there by P processors. Initially, the first P indices in
the queue are assigned one to each processor. Let i he the index a processor gets
from the queue. Before we compute each forward solve we set fwd_ready[] to be
the number of nonzero elements in each row of L. If fwd_ready[i] # I, then the
processor must busy wait, else, compute r;, = b,/L,,. Next, compute r;— = L;,q
and decrement fwd_ready[j] for all nonzero elements j of column i of L. Finally,
if the queue is not empty get the next task.

For the triangular solve, we experimentally compared three different techniques
for parallelizing the code. We call the first method dynamic scheduling (DS). The
elements of ¢ are assigned to processors in order, from | to .N. They are computed
as soon as the data they depend on is ready to be used. The data illustrate that
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poor performance may be expected if the index set is left in its original order.

The second technique is due to Baxter et. al. [3]. We call this technique
reordered static scheduling {RSS). They use the reordering strategy above. but em-
ploy a static assignment of tasks from the permuted index set to processors. Let
P be the number of processors. Processor i, 1 < i < P. gets tasks i + P x j for
J =0, ..., I_\j’rlj It has the advantage that for every iteration each processor
will solve for the same values of q. This characteristic is especially noticeable for
small problems when the entire problem fits in the local memory (or cache) of the
processors. But this may not be very good at load balancing. If there are wide
variations in the number of nonzero elements in the rows/columns of the matrix
then the static mapping may cause unnecessary busy waiting. This variation arises
in many different sitnations: non-uniform discretizations, adaptively refined meshes,
or mixed elemeunt tvpes (triangular and quadrilateral elements in the same grid) for
insfance,

The problem with reordered static scheduling is that the position of the task in
the schedule is determined solely by its depth in the dependence graph. The strategy
does not consider the amount of time needed to perform the task. It is possible that
a static assignment of tasks to processors could result in uneven distribution of work
and lower or less throughput.

The third techrique is called reordered dynamic scheduling (RDS). We reorder
the index set as above. but we put the indices (tasks) in a queue rather than stati-
cally mapping them to processors. The first processor done with the work initially
assigned to it takes the next job from the front of the queue. This is done to reduce
the time spent busy waiting due to potential load imbalance. There is an addi-
tional expense of maintaining a global pointer (m.next() on the Sequent) to the
first element in the queue.

The C code for reodered dynamic scheduling is shown in Figure 3. m_next() is
the system function which increments a global counter and returns its current value.
fwd_schedule[] is our permuted index set for the forward solve. As suggested by
Duff, et. «al. [7], we store the columns as packed sparse vectors held contiguously
in the array 1[J. The row numbers of the corresponding nonzero entries held in
L[] are held in the integer array rownum{]. The integer array start[i] points
to the start of column 1 in array 1[] containing the nonzero elements of matrix L.
In fact 1[start[i}] is the diagonal element L,;. The global variables unknowns
and tot_nonzero hold the number of rows in L and the total nonzero elements in
L respectively - start[unknowns+1] = tot.nonzero + 1.

Once we have gotten a task from the queue, we check whether all of the data
it needs are ready. This is done by looking at the value of the fwd_ready[i] array

containing the number of direct dependences for row /. If the value is greater than
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parallel_fwdslv(l, q,

double
100, qfl;
short int
row_num{];
int
my_id, num_proc;
{
register double
tmp;
register int
column, row, pointer;
int
task, m_next();

task = m_next();

while (task <= unknowns) {
column = fwd_schedule[task];
bck_ready[column] = WAIT;
pointer = start[column];

while (fwd_readylcolumn] > 1) continue;

qlcolumn] /= 1(pointer++];
tmp = qlcolumn];

row_num, my_id,

num_proc)

/% 1[] - nonzero elements of L */
/* ql] vector to be computed */
/* row_num{i]l - row of element i */

/% proc’s id and # of proc’s */

/*

get pointer into queue

/*
/*
/*

get column for this task
reset for back solve

get pointer into DS

/* busy wait until ready

/* solve for our qlil

/* store it in a local var

while ( pointer < startlcolumn+1]) {

row = row_num[pointer];
S_LOCK (1p[rowl);

qlrow] -= 1[pointer] #* tmp;
fwd_ready[rowl--;

S_UNLOCK (1p[rowl);

pointer++;
}
task = m_next();
1
m_sync();

}

/*
/%

set lock

mult q[i] by column j
/* decrement depend. vector
/* unlock lock

/* move to next nonzero element */

/* get mext task

/* synchronize before returning

Figure 3: Procedure for Parallel Forward Salve

I

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/

*/



Type
Case | Sequential DS RSS RDS

ty to effic. to effic. tp effic.
1 2,97 161 TR 34 73 32
2 2.30 78 .30 .33 42 7 .30
3 3.29 1.07 26 72 38 .99 28
4 3.34 1.54 21 .90 .36 1.03 31
5 11.32 3.43 27 2.13 RE 2.92 32
6 13.29 11.04 .10 2.73 41 3.29 34
T 665.21 11821 .13 | 219.46 .25 | 206.81 .27

Table 2: Time in seconds and efficiency of parallel forward solve on 12 pracessors
relative to sequential code

| then we busy wait. When fwd_readyl[i] is equal to 1 the dependences for ¢; have
been satisfied and we can compute q;. We set q; = ¢,/L;; and then loop over the
nonzero elements in column ¢ below the diagonal, computing ¢, = ¢, — L;;x¢,. Then
we decrement the value of the fwd_ready(j] array to indicate that one dependence
for q, has been <atisfied. The array q and rthe fud.ready array are shared and
access to individual clements must be synchronized using the system calls S_LOCK()
and S_UNLOCK(). These svnchronization procedures are called once for each nonzero
off-diagonal element in the lower triangular matrix each iteration. This locking and
unlocking operation takes about half of the time in the forward solve routine when
the matrix is stored by columns. We also reset bek_ready[] for the next back solve
operation.

In Table 2 we show the results for the three methods explained above on seven
test problems. This is the time spent during the iterative solution of .lr = b doing
forward solves. All times are measured in seconds. We also include the sequential
time for for each problem. t,. The sequential time given is the best sequential
code we could write rnning on one processor: there are no parallel constructs or
synchronizations used. Parallel code running on 12 processors of the Sequent took
time t,. We measure efficiency as

t,

effic. = —————,
ty X #proc

#proc = 2.

The DS timings are included for comparison toillustrate the benefit of computing
the dependence graph and permuting the index set. We see that both RSS and

12



Case | tpps — trss | Predicted || # iterations
1 0.05 0.06 16
2 0.22 0.11 41
3 0.29 0.14 63
4 0.13 0.13 5
3 0.79 0.47 101
6 0.44 0.-44 43

Table 3: Time Difference between RDS and RSS vs. Estimated time in seconds

RDS are significantly better than DS, sometimes more than twice as efficient. The
RSS method performs better than RDS in all but the last problem. [n the first
Test Case. RSS and RDS the two took almost the same time, and half as long as
dynamic scheduling. In the last case, RDS was more efficient than RSS despite
the calls to the global counter. This has several possible explanations. First, the
number of nonzero elements in each column was more in the first and last cases
than in the second through sixth cases. Thus. the relative overhead associated with
the global counter versus the amount of work to do per call is less. In the last case,
the number of nonzero elements per column varied between 8 and 40. Good load
balancing is especially important in this case for increased throughput. Statically
assigning tasks to processors by their depth in the dependence graph alone (as in
RSS) cannot achieve this. There must be some way to account for the amount
of work to be done in each task, not just the dependences of the task. The RDS
method performs better at this than the RSS method as shown in Test Case 7.

When the problems have a regular sparsity structure (most of the columns/rows
have the same number of nonzero elements) the time to compute each ¢, is roughly
the same and the load is balanced as long as each processor gets roughly the same
number of ¢;'s to solve for. Test Cases -6 have a regular sparsity structure and thus
the RSS method performed slightly better. The main contribution to this difference
is the fact that in the RDS technique a global counter is used to maintain the queue
of tasks. Tt takes about 50u-seconds for each call and this is done before each ¢
is computed. A prediction for the time difference when there is a regular sparsity
structure is

#unknowns
_——,-—) . (6)
#proc’s

In Table 3 we compare the actual difference with the prediction for the first 6 cases.
The right most column shows the number of iterations for convergence for each test

trbs — tRss = (50 —seconds)( #iterations) (

13



case. This model gives an estimate of the size of the difference that is correct to
within a factor of two.

4.4 Backward Solve

The backward solve is similar to the forward solve, but there are subtle differences
in implementation. To solve (4) we carry out the computation as a series of inner
products rather than outer products. LT is accessed by rows since we store L by
columns.

An outline of our back solve procedure follows. Just as in the forward solve,
we have a list of permuted indices back_schedule[]l. It is computed in a manner
analogons to fwd_schedule(]. back.schedule[] is treated as a queue of tasks to be
computed by rhe processors. bek_ready[] is initialized to the value ¢ ‘WAIT’’. For
some J.if bck_ready[j] = WAIT then thisindicates that 2[j] has not been computed
vet. Fach processor gets an index from the queue as it begins the back solve. Let
i be the index that some processor gets. For each nonzero element j in row ¢ of
[T. check bek_ready[j]. If bckready[j] = WAIT, then husy wait. Else. compure

z[i]- = L{_jz[j]. When all nonzero off-diagnoal elements in row / have been used
we calculate z{i] = z[i!/L]; and set bck.ready[i] = ‘‘DONE’’. The value DONE

indicates that the element of z[] is compnted. Finally, if the queue is not empty
get the next index.

The C code for this techuique is shown in Figure 1. As in the forward solve
routine we compnte the new vector in place. overwriting the previous entries of
z[J. 1[] is the arrayv containing the nonzero elements of the rows of the upper
triangular matrix. The beginning of row i is pointed to by the array start{i]. To
move across the nonzero elements of row ¢, from right to left, we start at pointer =
start[i+1]-1. start[i+1] points to L;41;+; in 1[] and start[i+1]-1 points to
the right-most nonzero element in row {. The bck.readyl] array is set to "BUSY”
during the previous forward solve. Therefore. if bck.ready[j] = BUSY. then z[j]
has not been computed vet in the back solve. To reset fwd_ready[j] for rhe next
forward solve we set fwd_ready[j] = fwd_depend[j]. fwd_depend[j] is rhe num-
ber of nonzero elements in row j of L. To indicate that z[j] has been computed in
the back solve we set bek_ready[j] to "DONE™. The back_schedule[] array contains
the index set that has been permuted appropriately for the back solve operation.
Finally. we set a barrier m_synch() to synchronize all processors at the end of the
procedure before returning.

There is no need to do the locking and unlocking as in the forward solve routine.
This procedire onlv writes to three <hared arrays fwd_ready(]. bck.ready[]. and
z[]. Fach locarion is read by manv processors but anlyv written to by one processor.

11



parallel_bckslv(l, z, row_num, my_id, num_proc)

double

10, z03; /* arrays for L and z */
short int

row_numl]; /* row_num{i] is row of element 1(i] */
int

my_id, num_proc; /* variables for processor # and # of processors */
{
register double

tmp;

register int

row, column, pointer;
int

task, m_next();

task = m_next(); ’ /* get first task to do */

while (task <= unknowns) {
row = back_schedule(task];
pointer = start[row+1] - 1;

column = row_num[pointer];
tmp = z{row]; /% copy z to local register variable */

while ( column > row) {
while (bck_readylcolumn] == SPIN) continue;/# busy wait until ready #/
tmp -= 1[pointer] * z[column];

column = row_num{--pointer]; /* get next column number */
}
z[rowl = tmp / 1llpointerl;
bck_readyl{row] = DONE; /* set flag that it is done */
fwd_readylrow] = fwd_depend[row]; /* reset for next forward solve */
task = m_next(); /* get next one to do =/
}
m_sync(); /* get all proc’s synched before returning */

}

Figure {: Procedure for Parallel Backward Solve



Method
Case | Sequential DS RSS RDS

te tp effic. tp effic. tp effic.

1 2.70 05 21 | 3% 5% | 45 50
2 2.65 67 .33 A2 53 .62 .36

3 3.07 .33 31 A9 32 7R 33

4 3.56 1.01 .29 %) D4 21 37

) 10.75 2.63 4 1.54 DR 2.6 35

6 12.38 7.18 14 1.72 60 | 2.35 A4

T 507.90 103.92 11 | 85.44 S0 1’580 .49

Table {: Time in seconds and efficiency of parallel backward solve on 12 processors
relative to sequential code

No locking is required in this situation. The inner product form of the triangular
solve therefore has much less overhead.

In Table t we compare the three methods for the backward solve. DS is clearly
slower than the other two. It is only included for comparison. We see that the
RSS method performs better than the other methods. Just as for the forward solve.
the time difference is due to the fact that in RDS a global counter is required o
maintain the queue of tasks. The difference is very pronounced for problems [-6:
since there is very little work to do to compute each z;; i.e., there are only a few
nonzero off-diagonal elements in each row/column. The efficiency of RSS and RDS
are almost identical for Test Case 7. The load balancing that is provided in RDS
makes up for the overhead of nsing the global counter. The amount of work to be
done to compute some z; is directly related to the number of nonzeros in row ¢ of
L. The amount of work per task affects the load balancing. Test Case 7 has the
most variation in the number of nonzero elements in its rows (and columns). As the
variation increases so does the need to account for this in the scheduling of tasks.

5 Matrix-Vector Product

[n this section we discuss the implementation of sparse matrix-vector products on
the Sequent. We show that it is more eflicient to store the whole symmetric matrix
by rows rather than trying to save storage and storing only the lower or upper
triangular half. This is true for both the sparse matrix-vector product and the
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triangular solves. To compute a general symmetric sparse matrix-vector product
Ar = b on the Sequent it is more efficient to store all of 4 by rows than to store
only the lower triangular part by rows (or columns).

When a sparse symmetric matrix is stored as a lower triangular matrix by
columns or rows {or if the upper triangular matrix is stored by columins or rows)
the mulriplication must be carried by a combination of inner and outer products.
The implementation becomes complicated and requires synchronization to protect
elements of shared arrays from being modified by more than one processor at a time.

An implementation of a symmetric sparse matrix-vector product written in C
is shown in Figure 5. For this example. only the nonzero elements of the lower
triangular part of A are stored (by columns). First. each processor initializes a
portion of the array b[J to be zero. Next, each processor gets a column of the
data structure. This is a column of the lower triangular part of the matrix and
a row of the upper triangular part. A column in the lower part, say column ¢,
is multiplied by element x[i]. The product is accumulated into the shared array
b(]l: bl[jl+=alpointer] xx[i]. To be sure that only one processor is writing to
b[j] at a time we must use the system synchronization routines S_LOCK() and
S_UNLOCK(). Next we multiply the element of column i by x{j] and add the product
to the local variable inner_prod. When we have exhausted all elements of the upper
triangular row, we add the local inner product into the shared array b[] using the
appropriate locks. In essence, we accumulate inner products locally and add outer
products globally. This approach requires two system synchronization calls per
nonzero element in the lower triangular part of 1. Even though the probability of
collision is small since we are dealing with a sparse matrix, this has to be done to
insure that only one processor updates an element of b[].

A procedure for computing a general sparse matrix-vector product where the
full A is stored by rows is much simpler and is shown in Figure 6. Each processor
computes a set of inner products. The processors dynamically get an element of (]
to compute using the system global counter m_next() The array row_start(] is an
array holding the starting point for each row as it is stored in the data structure.
The inner product of each row with r is computed and stored in b[]. This algorithm
requires no synchronization since the work is divided into non-overlapping groups
of rows.

In Table 5 we compare two methods for parallel computation of the sparse ma-
trix vector product with the time it takes to compute it sequentially. The first
method, “Svmmetric”, is the syvmmetric code from Figure 5. It takes advantage
of symmetry and stores only the lower triangular part of the matrix. The second
method, “Nosynch”, is the same algorithm but we have commented ount all of the
synchronization calls to S.LOCK() and S_-UNLOCK(). The answer we get is incorrect
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mult{a, x, b, row_num, first, last, my_id, num_proc)
double
afl, =01, bll;
short int
row_num{];
int
first, last, my_id, num_proc;
{
double
x_elem, inner_prod;
regiater int
peinter, k;
int
row, column, m_next();

for (k=first; k<last; k++) blk]l = 0.0; /* zero array */

m_sync();

column = m_next(); /* get our st column to start on =/
pointer = start[column]; /% get position of ist element */

ghile (column <= unknowns) {
x_elem = x[column];

inner _prod = alpointer++] = x_elenm; /* compute ali,il=x[i] #/
while (pointer < start{column+1]) {

row = row_num{pointer];
S_LoCK(1plrowl);

blrow] += alpointer] * x_elem; /# this is part of the outer prod. */

S_UNLOCK(1p(rowl);

inner_prod += alpointer++]*x[row];/* this is part of the inner prod. */

}
S_LOCK(1plcolumnl);
blcolumn] += inner_prod; /+ store the inner product now */
S_UNLOCK (1p{column]};

column = m_next(); /* get next column to work on */

pointer = start[column]; /* get pointer into array »/
}
m_sync(); /% wait until everyone else is done */

}

Figure 5: Code for Symmetric Sparse Matrix-Vector Product
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full_mult(a, x, b, col_num, first, last)

double
all, /* the nonzero entries of A */
x[1, /% the vector to mult by =/
bll; /* the result gets put here */
short int
col_num(]}; /* array of column numbers =/
int
first, . /+ first row we work on */
last; /% we do up to by not including this row =/
{
double

inner_prod;
register int

pointer, /» pointer into global DS */
row, /* row that we are working on */
column; /* column number in row that we are using */
row = 1;
while{row <= unknowns) {
row = m_next(); /% get row to work on */
inner_prod = 0.0;
/*
*+ compute alrow,*] *» x[+] { inner product}
*/
for (pointer = row_start[row]; pointer<row_start(row+1]; pointer++){
irner_prod += a{pointer] * x[col_num[pointerl];
}
blrow] = inner_prod;
}
w_sync();
}

Figure 6: Code for Full sparse matrix-vector product
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Method
Case | Sequential | Symmetric Nosynch Full

e t effic. tp effic. to effic.

T 5.6 91 A | 5’3 3| .36 X
2 5.29 .99 %) 59 D .63 a0

3 6.03 L.06 A7 7l .l .66 6

! 7.23 1.35 A3 a7 b 6 a9

” 21.20 3.64 19 2.41 73 2.27 %

6 13.29 3.82 56 2.35 91 2.55 .34

n 1270.%0 32135 .33 | 226,13 17 | 207.16 51

Table 3: Time in seconds and efficiency of parallel Sparse Matrix-Vector product on
12 proenssors relative to sequential code

bur we stop after the same number of iterations. This is to show the impact of
the svnchronization. [t also gives us a lower bound on the time for this method
of matrix-vector product. The last method, “Full”. is the times from the code in
Figure 6.

We sec that storing the full matrix is best. Timing and efficiency is better
than 709 except for large problems. We expect this. since matrix-vector products
are veryv parallel computations. [If we look at the difference between the parallel
times of the Symimetric and Nosynch columns it is clear that to use the system
syuchronization calls adds almost 30% to the cost of the computation. But, even
without the synchronization. we see that the Full method is hetter than the Nosynch
method. From this we conclude that there is no advantage in storing only half of a
svmmetric matrix for parallel compnutation of the sparse matrix-vector product on
this machine.

An alternative to sparse matrix vector multiplication computed as inner or outer
products is proposed my Melhem [19] where he suggests a general technique of using
striped matrix storage.

6 Triangular Solve Revisited

Tlie decision to store the full matrix A affects other parts of the code. We also stored
the full preconditioner as two triangular matrices. L and L. both by rows. The new
values for the timings of the triangnlar solves are compared with the old vabies in



Method
Problem Symmetric Full

fwd hek fwd bck
1 K S8 44 L2
2 55 A2 A1 A2
3 T2 49 .53 AR
4 .90 .35 .60 ot
3 2.13 1.51 1.5% L5t
6 2.73 1.72 179 L.70
71206.81 85.80 [ 200.52 216.63

Table 6: Time in seconds for Triangular Solve on [2 processors

Table 6. The columns labeled “Svinmetric™ are for storing only the lower triangular
half of the symmetric matrix. The columns under “Full” are the timings for storing
both the upper and lower triangular matrices of the preconditioner by rows. The
forward solve is faster because it uses inner products. There is no svachronization
for every element of L, only one for each row. We cannot, however. explain the data
from Case 7.

7 Parallel Efficiency of ICCG

In Table 7 we show the time required to solve (1) for each implementation. assuming
the preconditioner has be previously computed. In the first six cases it is clear that
storing the full matrix is better than storing only its lower triangle. The efficiency
is near or above 60% for the entire code. This is a very reasonable level and what
we expected. But, for the seventh case, the code was not efficient. In Appendix C
we show how the time to access array elements increases as a function of the array
size and discuss the time for Test Case 7.

8 Scheduling

Other scheduling methods not considered here are discussed in [9.10.14. 221, The
general problem is to schedule a set of partially ordered tasks onto a nultiprocessor
system so that the time required fo Complpte the tasks is miminized. This problem is
known to belong to the class of “strong™ NP-hard problems. The work by [9.10.22]
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Method
Case | Sequential | Symmetric Nosyvneh Full

Iy [ effic. tp effic. to effic.
l 15.26 2.54 o0 2.28 55 1.9 67
2 L7.x0 2.97 .50 2.67 5% 2.45 .60
3 21.00 3.59 A3 3.48 .50 3.07 AT
{ 22.52 4.16 A5 343 Dd 3.21 Bk
5 72.39 10.33 D6 9.58 .62 X.R3 .68
6 TR.09 11.01 09 9.64 67 .52 .76
T 2R[1.14 6535.39 .36 | 609.36 .33 | 660.19 .35

Table 7: Time in seconds and efficiency of Total [CCG code on 12 processors relative
tu sequential code

presents bounds on the number of processors required to compute the tasks in a
minimnm amount of rime and bounds the time to compute the tasks with a fixed
number of processors. Also. in [10]. bounds on the ratio of times for two different
feasible schedules are given.

Kasahara and Narita [14] present two different scheduling methods. CP/MISE
and DF/IHS. CP/MISE stands for critical path/most immediate successors first
and DEF/THS stands for depth first /implicit heuristic search. The primary difference
between the two is that the former schedules tasks as soon as possible and the latter
schedutes tasks as late as possible. Both require sorting of tasks at the same level
according to rhe number of predessors they have and both are O(.NV?) algorithms.
where .V is the number of vertices in the dependence graph.

We do not use either of these scheduling techniques. Sorting the tasks at each
level is expensive. We choose a scheduling method that is not optimal but requires
very low overhead.

9 Summary

We have discussed ditferent approaches for exploiting parallelism in the ICCG method
for solving large sparse symmetric positive definite systems of eqnations on a shared
memory parallel computer. Wi showed that performing a small amount of analysis
to determine the data dependences can drasticallv improve the parallel efficiency.
Addirionally, when the sparsity structure of a triangular matrix was regular then
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a reordered static scheduling method performed wore efficiently than a reordered
dvnamic scheduling method. Finally, we showed that for the Sequent it was more
efficient to store the whole symmetric matrix by rows rather than only the upper
or lower triangular part. The code for a full matrix was simpler and required less
svachronization overhead.
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A Test Problems

For this work we have chosen 7 test cases which are representative of rhe class

of problems solved by iterative methods.

All are fromn two-dimensional domains.

The first five are from the Harwell-Boeing collection {¥] and the last two are from

electro-magnetic analysis [3]. The rest cases are described in Table 3.

Case | Ref. Description Order | Nonzeros

! [R] | .\ nine point discretization of the Laplacianon | 900 1322
a nnit square with Dirichlet boundary condi-
tions. LAP30

2 (3] | Matrix nsed in modeling power system net- | 662 136%
works. PSADMITI

3 [s] | Matrix used in modeling power svstem net- 191 1080
works. PSADMIT2

! [%] | Matrix nsed in modeling power system net- [ 635 1967
works. PSADMITS3

5 i3] | Marrix nused in modeling power system net- | 113x 2396
works. PSADMITH

6 (5] | \ firsr-order triangnlar finite element dis- | 2500 7251
cretization of the Laplacian operator on a unit
sgnare.

7 5] | Matrix from a noolinear magnetostatic | 6317 69.670
model of 4 permaneunt magnet motor, us-
ing an unstructured finite element mesh with
mived triangnlar and quadrilateral third-
order elements,

Table 3 Test Case Descriptions
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B Sequent Overview and Performance Figures

This section provides an overview of the architecture of the Sequent Balance 21000
and the execution times for the operations that were used in the timings given in
this paper. The architectural description is due to Osterhaug {21].

B.1 The Sequent Architecture

The Sequent Balance 21000 is a shared memory multiprocessor. The processors
are identical 10-MHz National Semiconductor 32032°s. These are 32-bit processors.
They operate on a peer basis, executing a single copy of the operating systems
executive, or “kernel™.

There is no designated “master” cpu. All processors. memory modules, and i/o
controllers plug into a single high-speed bus. There is hardware support for mutual
exclusion - to support exchisive access to shared data structures. the system inclides
np to 64K user-accessible hardware spin-locks.

The svstem we used has 12 processors and 28 Mbytes of memory. [n addition.
each cpu has 8 Kbytes of local RAM and 3 Kbytes of cache RAM. The local RAM
holds a copy of certain frequently used kernel code and read-ouly kernel data struc-
tures. The cache RAM holds blocks of system memory most recently used by the
cpu.

Operand
Operation 4-Byte Integer | 1-Byte Real | 3-Byte Real
Addition 4.4 32.4 1.9
Multiplication 12.7 28.1 20.3
Division 17.0 33.0 23.5

Table 9: Time in useconds for Arithmetic Operations

B.2 System Timing

This section provides execution times in microseconds for a variety of operations that
were used by the programs discussed in this paper. Times for arithuetic operations
are shown in Table 9. These timings are computed by looping through a program
segment 50.000 times. The time before the loop was executed was then subtracred
from the time at the end of the loop. Some time was subtracted for loop overhead
and then that time was divided by rhe number of iterations through the loop.
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Locking and unlocking of locations in the hardware atomic lock memory was
done by the in-line ¢ macros S_LOCK() and S.UNLOCK(). If we assnnwe there is no
contention for the lock. locking and nnlocking a lock takes a total of 33 microsec-
onds. The system provided routines in the Parallel Programming Library were
slower, taking 33 microseconds. \ function. mnext(). is provided to increment a
global counter and return the current value. This function takes an average of 19
microseconds per call.



C Memory Access Times on the Sequent

. In the [C'CG method every element of L, LT, and .1 are read once each iteration.
To explain the inefficiency of Test Case 7 we ran a simple tost that iterates over
different array sizes accessing each element once per iteration. We measured the
average time to access an array element as a function of the size of the array.
We created a program with a double-precision array, big.array(]. with 200.000
elements. Then, we timed rhe following two loops:

for (test_size =1000; test_size<10000; test_size += 1000) {
timer(&start_time);
for (i=0; i<200; i++) {
for (j=0; j<test_size; j++) { /* first loop */
local = big_array(jl;
}
}
sep_timer(&end_time);

)

for (test_size =10000; test_size<200001; test_size += 10000) {
timer(&start_time);
for (i=0; i<200; i++) {
for (j=0; j<test_size; j++) { /* second loop */
local = big_array(jl;
1
}

sep_timer(&end_time);

}

We copyv the elements of the array one at a time to a scalar variable local. In
the first loop, the number of array elements accessed, test_size. varies from 1.000
- to 9.000 in increments of 1,000. In the second loop. the number of array elements
accessed. test_size, varies from 10,000 to 100.000 in increments of 10.000. We
loop 200 times for each test size and divide the rime by the total nnmber of array
accesses. This was done 5 times for each test and the results were averaged.
The timing routine returns both user time (utime) and system time (stime)
separately rather than the sum of the two We used the sum in all previous timings.
These quantities are defined as follows:

user time the total amount of time spent executing in user mode
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User time per memory access as a function of array size
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Figure 7: User Time in psecs for Memory Access as a fanction of Array Size

system time the total amount of time spent in the system on behalf of the process.

The results of this test are shown in Figures 7 and 8. The times are measured in
microseconds. There is approximately a 2% increase in user time per access as the
array size is increased from 120K to 130K. But, there is a factor of 3 increase in
system fime per access as the number of array elements in the test case increases
from 120K to 130K. Recall. the total storage for full 4 in Test Case ¥ is 132.823
double-precision numbers. The Sequent takes longer to access each element for this
large problem than for all the other test cases.

In Table 10 we show separate entries for the user time and the svstem time for the
sequential. symmetric and full matrix implementations of Test Case v. The feature
to notice is the drastic increase in svstem time lor the forward and backward solve
in the “Full” case as compared with the corresponding times of the “Syvmmetric”
and the ~Sequential™ implementations. This is partially explained by the test loops
above. We see that large problems such as Test Case 7 are not efficient on the
Sequent.
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System time per memory access as a function of array size
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Figure X: System Time in usecs for Memory Access as a function of Arrayv Size

Problem Operation

fwd heck mult total
utime | 576.05 | 506,50 | LL37.40 | 2575.25
sequential | stime | 94.53 1.67 119.74 | 25036
totals | 670.38 | 511.17 | 1277.11 | 2829.61
utime | L17.97 | 65.35 182.06 | 397.57
symmetric | stime | 88.84 19.95 143.97 | 257.82
(parallel) | totals | 206.81 | R5.80 | 326.03 | 655.39
utime | 73.33 7217 173.28 349.94
full stime | [27.19 | 14].46 34.1% 310.25
{parallel) totals | 200.52 | 216.63 | 207.46 660.19

Table 10: Detailed timing of Case 7 in seconds
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